

福島第一廃炉

2011年3月11日の事故

原子炉で起こったこと

津波襲来 電源喪失

1-3-4号機:水素爆発

格納容器からの放射 性核種の漏洩

水素が発生・放射性核種が蒸発

燃料集合体、溶融、崩落

溶融した燃料が落下

原子炉圧力容器 (RPV)

原子炉格納容器 (PCV)

使用済燃料貯蔵プール

ドライベント・ウェット ベントによる放射性核 種の放出

発電所の設備の解体などを進めていき、 放射性物質によるリスクから人と環境を守る活動

廃炉を 行うことで...

リスクを十分低いレベルにまで下げることが廃炉の目的

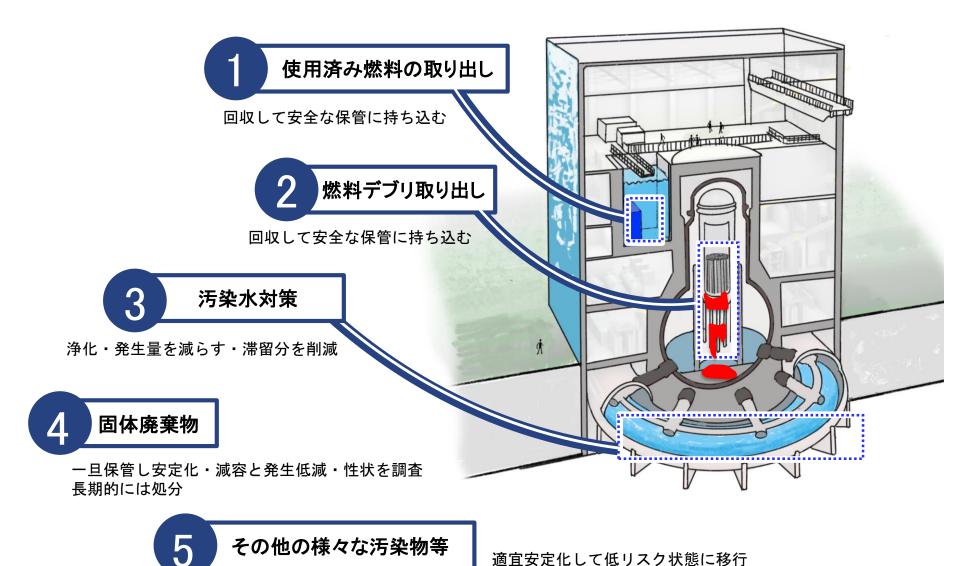
リスクが高い状態

コントロールされ安定している が…不確実性の残る状態

一定のリスクが残る

積極的な管理 で安全を確保

リスクが低い状態


放っておいても安全で… 誰もが安心できる状態

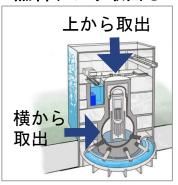
リスクは限り なく低い

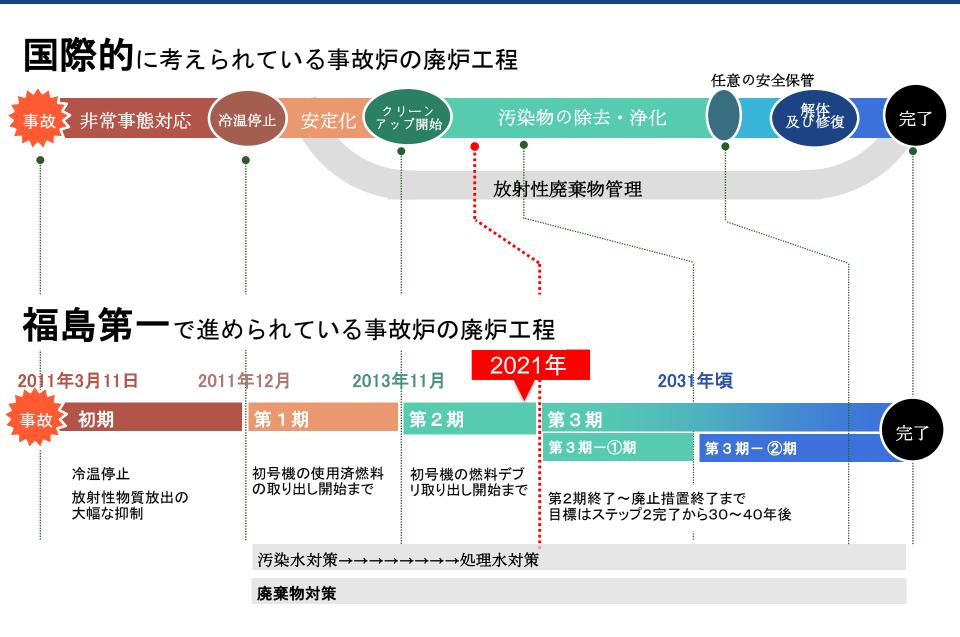
サイトを別な 用途に使える

廃炉の中長期計画(政府方針)

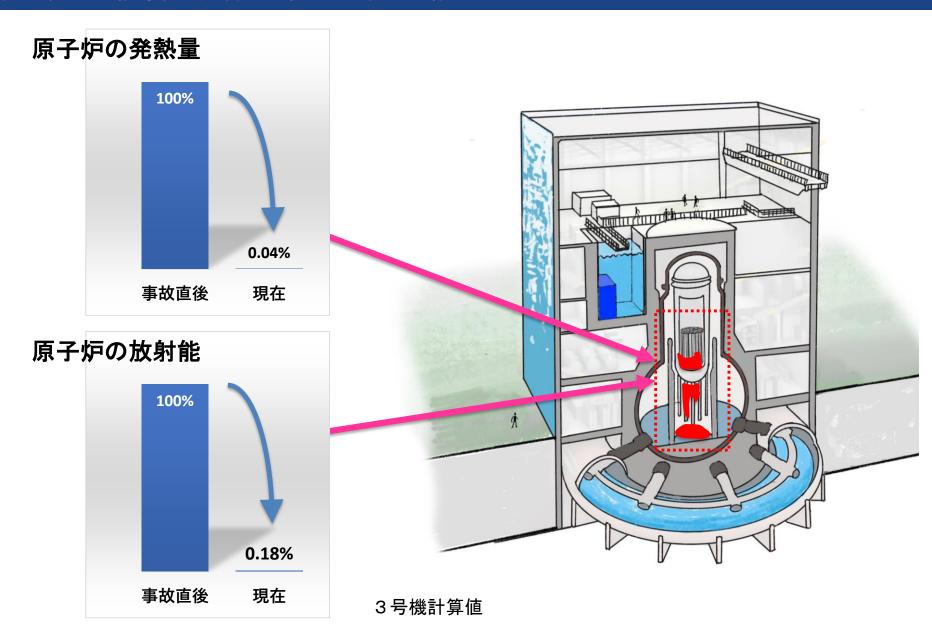
- 原子炉の内部調査
- ・ 燃料デブリ取出しの研究開発・工法検討
- · 建屋内滞留水処理
- ・ 3・4号機使用済燃料取出し
- ・ 1・2号機使用済燃料取出し準備

3号機使用済燃料の取り出し|東電


3号機内部調査水中ROV|東電


- ・ 1~6号機の使用済燃料取出しの完了
- ・ 燃料デブリの試験的取出しに着手
- ・ 段階的に取出し規模の拡大を進める。
- ・ 汚染水発生量を最小限に減らす
- ・ 廃棄物の保管を進める

使用済燃料取り出し



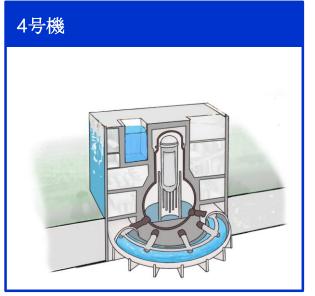
燃料デブリ取出し

原子炉の危険度は、時間の経過に沿って格段に下がっている

この10年で放射線安全環境は大幅に改善した

2020年2月周辺住民の皆さんの視察|経産省

2011年事故後


注:実際の6号機は格納容器の型が異なります

2021年

注:実際の6号機は格納容器の型が異なります

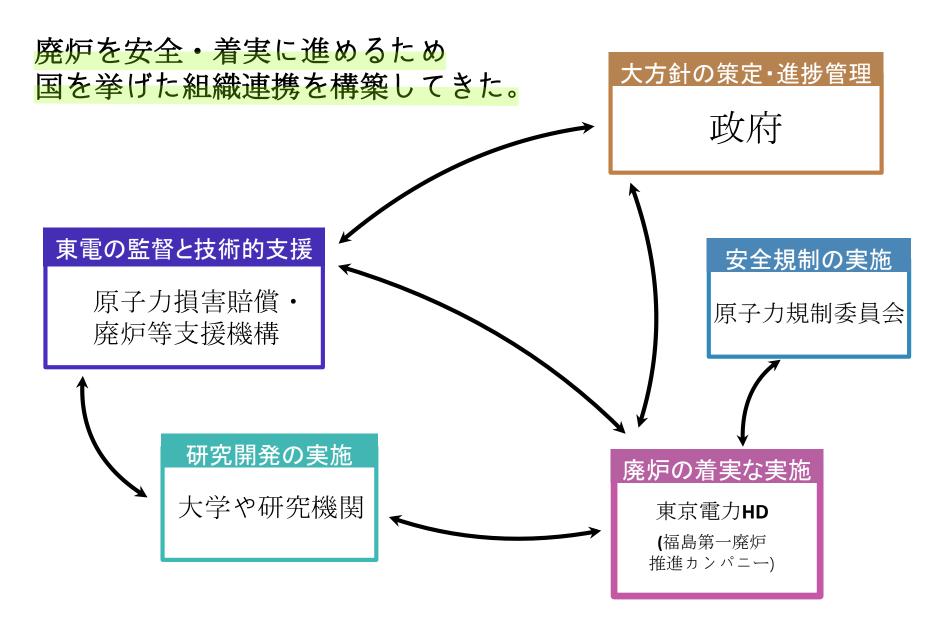
2031年 頃以降

注:実際の6号機は格納容器の型が異なります

安全な保管に持ち込む事が優先課題

- 事故炉から回収した使用済燃料は、乾式 キャスク(保管容器)等において厳重に 保管される
- 一時保管されてきた多量の固体放射性廃棄物については、今後の発生量低減や減容に取り組むと共に、増設中の頑丈な廃棄物保管庫において貯蔵される




根性だけでは成立しない廃炉(技術・組織・体制・地元)

状況を十分に掌握し、 体制や仕組みを整える。

1 廃炉事業を確実に早く、 安全に執行していくこと

2 長期の廃炉事業の 出口戦略を定めていくこと

海外の例に学ぶ(国際協力は必須だ)

世界の事例に学ぶ。

1979年—1989年

米国スリーマイルアイランド 2号機の燃料デブリ回収作業

圧力容器の中にデブリ閉じ込められた事例。作業員が遠隔作業で、10年間で取り出し完了。しかし福島第一の場合は、圧力容器の外にデブリが存在しているため、大規模である。参考なる事例。

ここ10年、各国や国際機関との強い連携を構築してきた。

道半ばの「技術判断と安心の問題」

ALPS処理水の問題

情報が不足 不安・・ 風評被害の可能性

環 境 影 響度

環境中に存在 事故前も放出 膨大な敷地に保管

トリチウム

固体廃棄物

環境に出してはいけない 慎重な取組を要す

燃料デブリ

環境に絶対に出してはいけない 廃炉最大の取組を要す

数十年

数百年

数万年

情報の提供・地元の皆さんとの対話

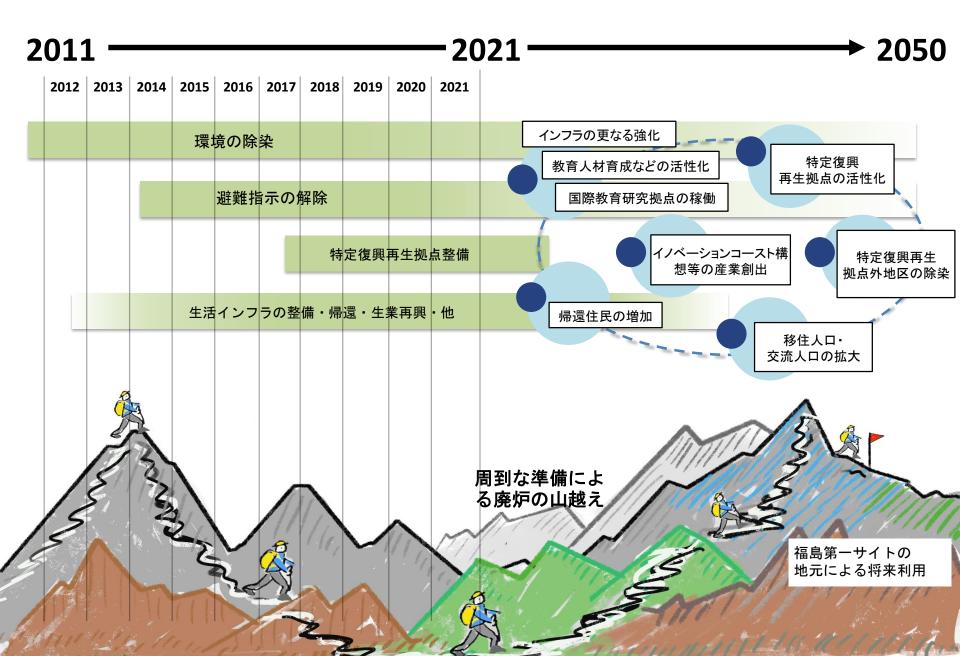
廃炉に関わる関係者・関係機関による対話

廃炉・汚染水・処理水対策福島評議会

特定原子力施設監視·評価検討会

福島県原子力発電所の廃炉に関する安全監視協議会

福島第一廃炉国際フォーラムでの住民の皆様や若者達との対話



今後の廃炉の展望

	•				
2011年3/11から	2011年12月	2013年11月から	2022年頃から	2031年頃から	
故 刻期	第 1 期	第2期	第3期	完	
			第3期一①期	第3期一②期	
●冷温停止 ●放射性物質放出 の	●初号機の使用済燃 料取出し開始まで ●初号機の燃料デブリ 取り出し開始まで		●第2期終了~廃止措置終了まで 目標はステップ2完了から30~40年後		
大幅な抑制	. Ÿ	N.	广	术	
施設安全	事故炉を安定に維持 放射能漏洩を極小化・モニタリングを確立 津波や地震への耐性を確保 高リスク源への処置を進めた 放射線安全環境を改善 汚染水発生量削減策を実施 建屋内滞留水を削減 ALPS処理水が徐々に蓄積		放射能閉込めや環境改善を厳重に継続 不要施設の解体や整備を進める 汚染水発生量削減		
汚染水対応			建屋滞留水を低減 ALPS処理水の放出を計画 使用済燃料取出し完了	 	
使用済燃料	3号・4号機の使用済燃料を回収完了 1号・2号機の使用済燃料回収の準備工事を開始 一部の使用済燃料を乾式キャスクに保管		原子炉内部点検 2号機での燃料デブリの 小規模な取出し	1~3号機燃料デブリの取出規模拡大	
燃料デブリ	事故炉の内部を点検・内部 燃料デブリ取出し装置の関		瓦礫屋外保管を解消		
放射性廃棄物	廃棄物保管庫増設・減容施設を稼働 一時保管廃棄物の保管状況の改善を実施 放射性廃棄物の性状分析を実施 放射性廃棄物分析施設を建設		廃棄物保管・減容・安定化 分析施設にて廃棄物やデブリを分析 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、		

廃炉は復興と同時に進んでいく

ありがとうございました