

Overview of the U.S. Department of Energy Office of Environmental Management Mission

Jeff Griffin, Ph. D.

EM Advisor & Associate Laboratory Director Environmental Stewardship Directorate Savannah River National Laboratory

August 6, 2018

Outline of Presentation

- Overview of EM Mission
- Scope of EM's Cleanup Challenge
- Organization of the EM Program
- Approaches and Tools Utilized by EM
- Path Toward Completion
 - Hanford Site Progress
 - Savannah River Site Progress
- Strong Record of Success
 - Rocky Flats
 - Fernald
- Keys to Success
- Sharing and Learning in Collaboration with Japan

EM Mission Today

EM is charged with completing cleanup of the most complex nuclear waste sites in the U.S. as safely, effectively and efficiently as possible.

- U.S. government's 3rd highest liability environmental remediation obligations
- Facility D&D, tank waste disposition, TRU and low level waste disposal, groundwater and soil remediation, storage and disposal of spent fuel and other nuclear materials
- Complex regulatory environment with active stakeholders
- Approximately \$6.5 billion annual budget
- Approximately \$300 billion lifecycle cost to go
- Utilizing best in U.S industry
- Innovative cleanup solutions
- Focus on the field safety paramount

Magnitude of EM Cleanup Challenges

Initial Challenge:

- 107 waste sites
- Over 8000 square km
- 5000 contaminated facilities
- Almost 400 million liters liquid radioactive waste
- 700,000 tons depleted uranium
- 40 million cubic meters of contaminated soil
- Over 6.5 trillion liters of contaminated groundwater

Progress Through Action

Progress to Date:

- Closed 91 EM sites, leaving only 16
- Reduced overall cleanup footprint by 90%
- Transformed radioactive liquid waste into 4000 canisters of safe, stable glass (Savannah River)
- Remediated about 75% of soil/groundwater release sites
- Completed D&D of a site's entire uranium-enrichment gaseous diffusion buildings (Oak Ridge)
- Operating only separations facility in U.S. for nuclear material disposition
- Established nation's only deep geological repository (WIPP)

EM- Focused on the Sites

EM's Project Management Approach

- Focus on end-states
 - Work with regulators/communities early and often
- Approach used: Manage <u>contract</u>, not <u>contractor</u>
- Partner with contractors
 - Private sector companies
 - Employ over 20,000 for EM mission
- Incorporate lessons learned
 - Technical
 - Procurement/contracting
- Incentivize safety, efficiency and innov
- Set smart evaluation criteria
- Expect issues
 - Identify early to reduce impact

Moving Toward Completion

Hanford Site Progress

Background

- Cleanup mission began in 1989
- 1520 square km
- 9 reactors
- 2,300 tons of plutonium
- 210 million liters of waste in 177 tanks
- 1,715 facilities
- 2,032 waste sites

Scope

- Tank waste retrieval/disposition
- Transuranic waste and Mixed LLW disposition
- Soil/Groundwater remediation
- Decommissioning and decontamination
- Spent Nuclear Fuel

Progress

- Active footprint reduction of ~200 sq. km
- River Corridor Closure Contract complete
- Waste Treatment Plant for liquid waste under construction
- Pu Finishing Plant demolished
- 40 billion liters of groundwater treated
- Over 1.6 billion kg of materials disposed at Environmental Restoration Disposal Facility (ERDF)
- Moving sludge away from Columbia River (video)

Hanford Site Progress

Savannah River Site Progress

Background

- 800 square km
- 5 reactors
- Over 120 million liters tank waste in 51 waste tanks

Scope

- Tank waste retrieval/disposition
- TRU/Mixed LLW disposition
- Soil/Groundwater remediation
- Decommissioning & Decontamination
- Special Nuclear Materials Management

Progress

- Over 4,000 canisters of vitrified waste (50% complete) at DWPF
- 8 waste tanks closed
- Salt Waste Processing Facility construction complete will accelerate liquid waste mission
- Over 400 of 515 waste sites remediated
- Reprocessing facility remains in operation
- Nuclear material storage capabilities lynchpin for U.S.

Defense Waste Processing Facility

Salt Waste Processing Facility

Rocky Flats – From Nuclear Waste Site to Wildlife Refuge

Starting Point:

- 40 years of operation
- Legal cleanup agreement
- 25 square kilometer site
- 800 buildings many highly contaminated
- 21 tons of weapons grade materials
- 100 metric tons plutonium

Challenge:

- Manage waste, materials
- Clean up, convert site to beneficial use
- Work in safe, environmentally responsible, cost effective manner

Outcome:

- Completed in 10 years for \$7 billion
 - **Original estimated at \$37 billion over 65 years**
- Stabilized, consolidated waste offsite
- Decommissioning and demolition of facilities
- Soil and groundwater remediation

Impact:

- National Wildlife Refuge
- Closure contract lessons
- **Technological innovations**

Fernald - From Nuclear Waste Site to Wetlands Preserve

Starting Point:

- 4.3 square kilometer site
- 11,000 cubic meters LLW
- 1.0 square kilometer plume under Great Miami Aquifer
- 1.7 million cubic meters contaminated soil
- 15 million kilograms uranium product

Challenge:

- First EM site to begin cleanup
- Operations halted with material in process line
- Workforce transition
- Strained relationships with stakeholders

Outcome:

• Completed - \$80 million under budget, ahead of schedule

Impact:

- Eliminated world's largest source of radon gas
- Wetlands preserve open to public
- Lasting lessons learned:
 - Importance of stakeholder/regulator partnerships
 - Getting labor on board
 - Need for technological innovation
 - Balance of on-site disposal versus offsite shipments

Keys to EM Success

- Commitment to completion mindset, "can-do" attitude
- Incentivized contracts that reward schedule and cost performance
- Strong partnerships with regulators, stakeholders, community
- Leveraging National Laboratories and industry for innovative solutions
- Preparing next generation workforce
- Removing regulatory barriers
- Timely deliberate decision-making with bias toward action

Strong Partnerships

Proactive engagement with partners is key to safe, efficient, cost-effective cleanup.

- Public education initiatives
- Open communication newsletters, social media, site tours, meetings, events
- Site Advisory Boards
- Actively solicit input from regulators and stakeholders on key decisions
- Maximize partnerships with academia, national labs, international peers
- Maintain strong relationship with appropriators
 - Help them understand the challenges

National Laboratory Support for EM

National Laboratories Provide Innovative Technologies and Approaches for:

- Waste Stabilization, Treatment & Disposition
 - Complex wide process engineering support and flowsheet development
 - Development of waste forms
 - Waste treatment technologies

Remediation & Cleanup of Legacy Contamination

- Soil & Groundwater technology development
- Nuclear facility decommissioning technologies

Assessment & Verification of Effectiveness

- Test beds for commercial technologies
- Modeling and performance assessment support
- Innovative long-term monitoring approaches
- Independent validation to support remediation

U.S. Japan Collaboration

Opportunities to leverage capabilities/expertise in areas of: immobilization of waste, packaging of HLW and SNF, repository development, D&D technologies, large-scale remediation

2011 – BLC established to strengthen support for Fukushima recovery

- Provides mechanism for dialogue on safe and secure use of nuclear energy, including response to accident
- BLC Decommissioning and Environmental Management Working Group
 - Co-chairs: EM, EPA, MOE, METI

2013 – Initiated Savannah River National Laboratory/Pacific Northwest National Lab support for TEPCO

- Sharing expertise/lessons learned
- Providing independent assessment of technologies
- Providing technology and approach options
- Since 2017, TEPCO has detailed an engineer to SRNL to assist

Sharing and Learning in Collaboration

- DOE and it's National Laboratories continue to be actively involved with the Japanese Government and technical organizations on issues of mutual concern
- Challenges related to EM cleanup are not unique to the U.S.
- While remaining scope is immense, EM is making steady and stable progress
- Successfully putting a number of tools to work to get the job done
- Shared experience and collaborations like this are keys to success

Questions?