

NDF Forum July 2–3, 2017, Iwaki Japan

Fuel debris characterization

for Decommisiioning of Fukushima Daiichi NPS

Tadahiro WASHIYA

July 3, 2017

<u>Collaborative</u> <u>Laboratories</u> for <u>Advanced</u> <u>Decommissioning</u> <u>Science</u> (CLADS), Japan Atomic Energy Agency (JAEA)

International Research Institute for Nuclear Decommissioning (IRID)

This paper includes part of the results obtained under the research program entrusted to International Research Institute for Nuclear Decommissioning (IRID) including Japan Atomic Energy Agency (JAEA) by the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI) of Japan.

- JAEA has been studied characterization of fuel debris and MCCI product for Fukushima Daiichi NPP (1F).
 - Obtained fundamental data by simulated fuel debris and TMI-2 sample with considering 1F distinctive reactions
 - > Estimated 1F debris properties as mechanical and chemical
 - Created the "Estimated properties list " of the 1F debris
- \Rightarrow Contribute to preparation and planning for 1F decommissioning.
- 1F debris sampling will be performed in the near future, and JAEA is conducting preparation of the analysis.
 - > To consider purpose of sample analysis
 - > To confirm debris properties by 1F sample analysis
 - > To confirm damaged condition in 1F reactor core by the results
 - International cooperation will be effective
- ⇒ The 1F' debris sample will more specifically contribute to the defueling, storage, conditioning and disposal, and also to study on SA research and accident management.

Decommissioning

The 1F debris, 1F specifically conditions are considered as following.

- Effect of sea water (alternative coolant) ~ salt deposition on the debris surface?
- Effect of B_4C as control rod material \sim boride' chemical form and distribution in the debris
- Effect of concrete interaction (MCCI)

IRID

• Other effects: Pu, Gd(BP), leaching, FP chemical form and etc.

The property is estimated by simulated debris (Solid phase, Components, Mixing rate, Mechanical and thermal proierties)

Contribute to debris defueling (tool design, criticality safety control, storage and management)

Typical perspective view of 1F reactor

(1) Sintering

 $yUO_2 + (1-y)ZrO_2 \rightarrow (U_yZr_{1-y})O_2$

- Same as fuel pellet fabrication
- Mixture, Crush, Pelletize, Sintering (Ar, ~1730°C)
- Additive: Gd₂O₃, Fe₂O₃, CaO
- With control oxygen potential

(2) Arc dissolution

- Entire uniform heating
- Required metal rich conditions
- Simulated Core Debris , MCCI product
- ∼5 g / sample

- Concentrating light as heat soce
- Erosion under thermal gradient conditions
- Various atmosphere gas
- Small scale MCCI: Melting of (U,Zr)O₂

Effect of cooling rate on (U,Zr,Fe)O₂

Sea salt and B_4C effect on simulated debris ADS

Aluminum crucible

Simulated debris

pellet

Salt filling

(1) $(U_{0.4}, Zr_{0.6})O_2$ – Sea water reaction in high temp.

SEM images on the (U0.4Zr0.6) O_2 pellet Heat-treated with salt at 1275K for 12h under air flow.

(1) B_4C reaction in high temp.

TOSHIBA

Leading Innovation >>>

IRID

Collaboration with Toshiba and National Nuclear Center of the Republic of Kazakhstan (NNC)

MCCI effects on pedestal concrete

MCCI product in engineering scale test

cea

IRIC

Collaboration with JAEA and French Atomic Energy and Alternative Energies Commission (CEA)

Chemical alternation of LFCM/Che-NPP

Collaboration with JAEA and Institute for Safety Problems of Nuclear Power Plants of NASU (ISP-NPP)

Chernobyl's experience

IRID

Chemical alteration of debris

- Chernobyl's "LFCM : Lava-like Fuel-Containing Materials" is still leaving in the reactor area, hence LFCM slowly react with moisture and air. ¹⁾
- Secondary chemical species are generated on the surface, including dissolvable uranium.

Aerosol generation

- Aerosol is generated on the surface of LFCM continuously.²⁾
- Major radio nuclides are ¹³⁷Cs/²⁴¹Am, ²⁴¹Am/¹⁵⁴Eu, ¹³⁷Cs/¹⁵⁴Eu

Concerning for Fukushima Daiichi NPP

- Potential of similar alteration on the fuel debris & MCCI production in 1F conditions.
- Treatment of the aerosol generated by the fuel debris & MCCI production.

1) B. Burakov "Material Study of Chernobyl "Lava" and "Hot" Particles", International Experts' Meeting on Decommissioning and Remediation after a Nuclear Accident , Vienna, Austria, 28 January - 1 February 2013.

Uranyl- phases generated on the surface of Chernobyl's "Lava"

Aerosol generated from LFCM

2) http://www.jsme.or.jp/pes/Research/A-TS08-08/index02.html

Contribution to decommissioning

- To understanding the damaged state inside the reactors; quantity, shape, composition, etc.
- To understanding the contamination; radiation, nuclides, chemical form, etc.
- To understanding the safety; criticality, hydrogen, corrosion, etc.
- To examining the defueling; criticality, tools, method, etc.
- > To storing and storage

IRIT

To reatment and disposal

Contribution to SA and AM

- To investigating the accident progression; in/ex-vessel phenomena, containment failure, fission product behavior, and source term, etc.
- To investigating the system reliability; coolability, containment, corrosion and erosion, etc.

Decommissioning **Analysis and examination** using fuel debris and other core materials S.A. and A.M. Research

International Joint Research Project "<u>Preparatory Study on Analysis of Fuel Debris</u> (<u>PreADES</u>)" will be launched by OECD/NEA/CNSI

Region A : Upper Structure (Purpose) Surface contamination survey, Radiation estimation, Study of decontamination method

Region B : Shroud (Purpose) Surface contamination survey, Radiation estimation, Study of decontamination method

Region C : Core part residue (Purpose)

Evaluation of Residual volume, Residual form, Homogeneity and safety

Region D : Control Rod Guide Tube(CRGT)

(Purpose) Evaluation of Residual volume, Residual form, Homogeneity and safety

• The analysis workflow considered to enable the efficient debris analysis.

IRID

• In this workflow, values of sample with unknown components are roughly analyzed by the non-destructive method and then the overall analyses is created.

Overall debris analysis workflow plan

The X-ray CT test apparatus has been developed as a non-destructive examination device for examining the internal condition of subassembly (Budle Duct Interaction, etc) and for reflecting to soudness confirmation and fuel-life estimation, and installed in the extension facility of Fuel Monitoring Facility (FMF)

Cross sectional of gamma tomography

Construction of quantitative evaluation method of porosity due to pore, etc.
Construction of fuel debris component identification method

Characterization on fuel debris

- For 1F decommission, estimated debris properties is essential
 - Fundamental data has been measured using simulated debris, etc..
 - Density, Mechanical properties (Hardness, Elastic modulus, Fracture toughness), and thermophysical properties (Thermal conductivity, Specific heat, Melting point).

• 1F's specifically conditions are investigated

- Seawater, B₄C as control rod material, Pu and concreate interaction was examined experimentally.
- Chemical alteration on the debris at various conditions needs to be investigating.

Preparation of 1F debris analysis

• Debris analysis will contribute to 1F decommissioning and SA research etc.

- Sample analysis help for understanding the damaged reactors core, for implementing the decommissioning work, for investigating the accident progression, and for safety analysis.
- Debris analysis needs to be discussed internationally
 - The 1F debris analysis can be used as expanding the knowledge and expertise on the severe accident internationally.

Thank you for your attention