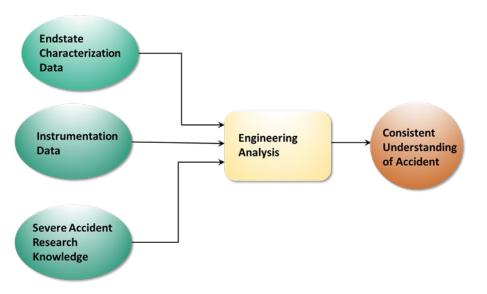

U.S. Perspectives Based on TMI-2 Defueling Activities

6th International Forum on the Decommissioning of the Fukushima Daiichi Nuclear Power Station Fukushima Prefecture August 28-29, 2022


Presented by: Joy Rempe Contributors: Joy Rempe, Rempe and Associates, LLC; Mitch Farmer, Argonne National Laboratory; Damian Peko, U.S. Department of Energy; and Donald Marksberry, U.S. Nuclear Regulatory Commission

Three Mile Island Unit 2 (TMI-2) Accident on March 28, 1979

- Design and Other Considerations:
 - Plant contained two Babcock & Wilcox Pressurized Water Reactors, each rated at 2,772 MWt
 - Two loop nuclear steam supply system housed in a large dry containment
 - "Titanic" mentality about design safety existed
- Event Synopsis:
 - Loss of steam generator feedwater during maintenance on condensate polishing demineralizer system
 - Pressurizer pilot operated relief valve failed to close leading to undetected small break loss of coolant accident
 - Subsequent operator actions led to severe accident
 - Approximately 26% of core region voided; 20,000 kg of material relocated to reactor pressure vessel (RPV) lower head
 - Hydrogen release led to ignition in containment
 - Limited radioactive material release: 15 Ci (560 E9 Bq) of Iodine-131; International Nuclear Event Scale (INES) Level 5 [Accidents at Fukushima Daiichi rated as INES Level 7]
 - 144,000 persons within 15 miles voluntarily evacuated for ~1 week

TMI-2 Approach to Identify and Prioritize Cleanup Information Needs

- Process relies on instrumentation data, post-accident examinations, existing severe accident knowledge, and engineering analyses
- Efforts initially focused on stabilizing the plant before focusing on cleanup

- Key to prioritize activities, emphasizing those that:
 - Minimize future radiation releases and site hazards,
 - Ensure safe and efficient cleanup, and
 - As resources allow, reduce uncertainties related to accident progression and reactor safety enhancement.
- Most high priority information <u>desired</u> for reactor safety insights <u>required</u> for cleanup

Various Debris Retrieval Methods Employed

Core bore machine (adapted drill pipe support s mining drill)

Six major regions: core cavity, lower core support assembly (LCSA), behind and in the core baffle plate, lower reactor vessel head, and 'elsewhere' in the plant

Different location geometries and debris types required different retrieval methods:

- Core Bore Machine (solidified molten core, LSCA cutting)
- Cutting (Plasma Arc, Hydraulic Shears and Saws)
- Bulk Removal (Air Lift)
- Mini-submarine (in pressurizer)
- Manual Controlled Equipment (Grippers, Buckets)
- Difficulties (resolution)
 - In-situ repairs (mockups and testing, spares and repair tools)
 - Different debris/structure properties (prototypic testing)
 - Water clarity (hydrogen peroxide)
 - Heterogeneity (distribution and mass of samples)

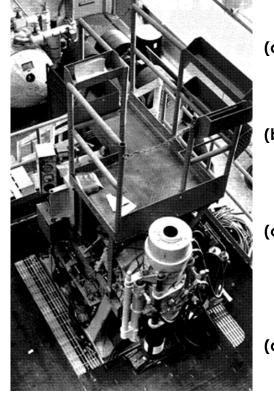
Intact TMI-2 vessel and containment simplified cleanup

A

Manual

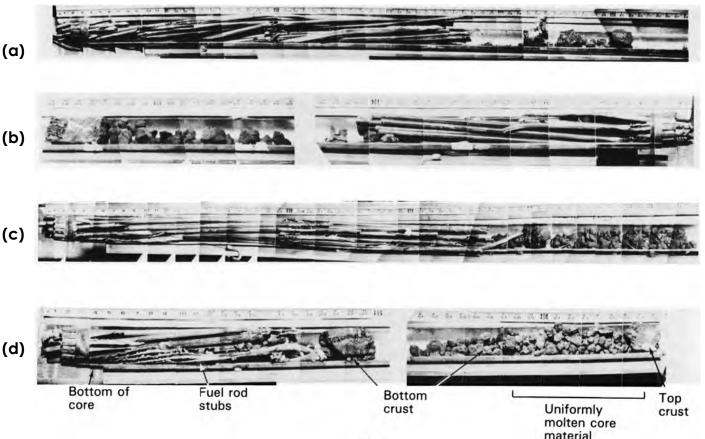
scooper

Core grab


sample tool

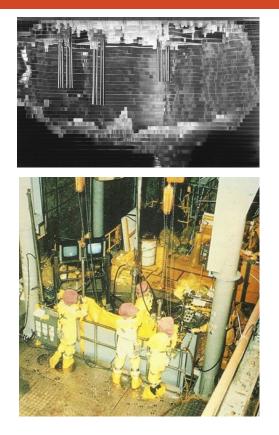
TMI-2 Background

Examinations Provided Insights for Cleanup and Reactor Safety



Core Bore Machine Provided Insights for Reactor Safety and Facilitated Subsequent Defueling

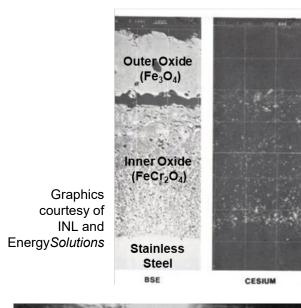
Core bore machine (adapted mining drill)


Graphics courtesy of INL and Energy *Solutions*

- Defueling paused for core bore sample retrieval
- Acquired 9 full length core samples of debris and remaining fuel structure
- <u>Primary purpose</u>: benchmark severe accident codes [elemental composition, oxidation state, material interactions, peak temperatures, and retained fission products]
- <u>Secondary purposes</u>: support defueling planning and provide access to lower core support structure
- When defueling resumed, core bore machine repurposed to destroy hard layer and eventually core support structure

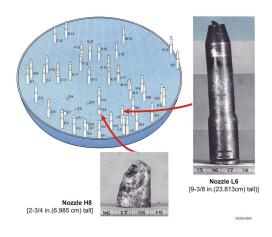
Mosaic photographs of core bore samples for (a) peripheral core position D8, (b) central position G8, (c) peripheral position G12, and (d) central position K9.

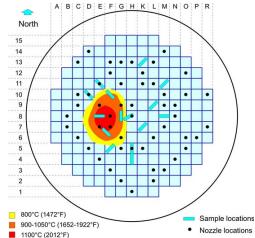
TMI-2 Examination Perspectives



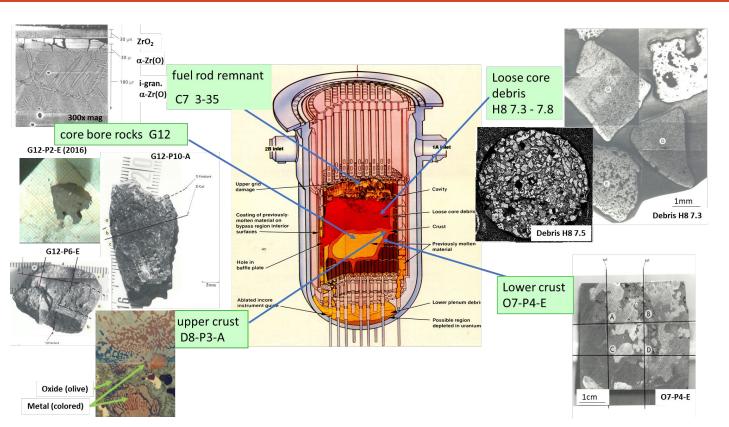
Desired Information	Methods	Planned Use/Comments					
On-Site (In-situ)							
Debris location, topography,	visual images (photos,	Provided insights about core damage and debris					
fuel and structure damage	videos, etc.)	location, melt progression and insights for selection of					
(distortion, slumping, melting,		subsequent samples. Documented conditions of samples					
fragmentation, oxidation,		prior to removal.					
asymmetries, etc.)		Retrospective Comment: Most useful information for					
		defueling planning and design and model development /					
		confirmation; required for cleanup					
Debris location and	ultrasonic topography	Backup to visual images, provided insights about debris					
topography	system	location; used throughout defueling efforts.					
		Retrospective Comment: Useful information for gross					
		model development/confirmation. Confirmatory data for					
		design and qualification of equipment for debris					
		removal, transport, and storage.					

Graphics courtesy of Energy*Solutions* and INL


For additional information regarding TMI-2 examination requests, see EGG-TMI-6169 at: https://inldigitallibrary.inl.gov/TMI/EGG-TMI-6169-r1.pdf#search=EGG%2DTMI%2D6169


TMI-2 Examination Perspectives (Cont'd)

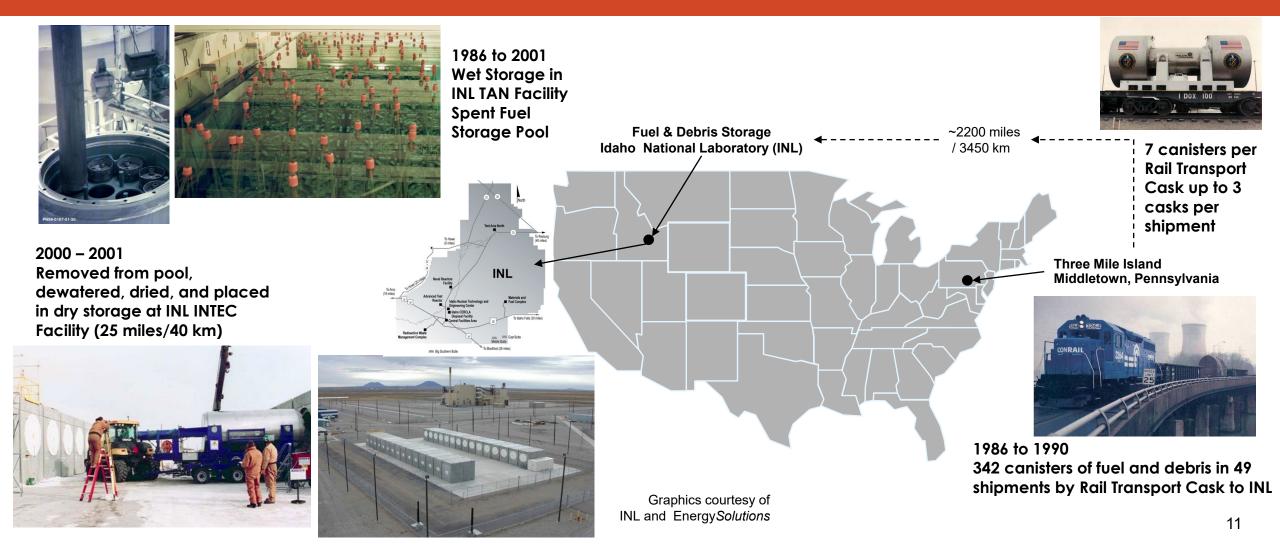
Desired Information	Methods	Planned Use/Comments						
Laboratory								
Reactor coolant system	chemical,	Data to benchmark code						
structures and	radiochemical,	predictions for temperature						
component information	and metallurgical	and fission product transport						
[peak temperatures,	exams, and	and deposition. New models						
temperature history,	laboratory	developed, as needed.						
and inventory,	techniques for	Retrospective Comment:						
distribution, form, and	measuring	Fission product distribution						
size (if particulates) of	physical	and temperature information						
deposited fission	properties of	used for <u>gross</u> model						
products)]	deposits	calibration.						



TMI-2 Examination Perspectives (Cont'd)

	Desired Information		Methods	Planned Use/Comments	
A.		Laborato	<u>y</u>		
1 - Sin / All		Loose Debris – composition, fission product retention/release, physical	chemical, isotopic,		
STATE LIST STATE	Corium,	form (size, porosity, permeability), peak temperature, liquefaction	elemental,	Data to develop and benchmark code predictions	
	vessel,	temperature, cooling rate	radiochemical, gamma	for temperature and fission product transport and	
SCH TIML	and	Fuel rod segments – characterize fuel rods at boundary or transition	scanning,	deposition. New models developed, as needed.	
TITI APPER	nozzle	zone between the melted and rubble debris; fission product	metallographic exams	Insights regrading reactor pressure vessel integrity	
SALLAR .	samples	retention/release in intact pellets, oxidized fuel, liquefied fuel,	and various laboratory	and potential failure modes.	
		fuel/cladding interactions, residual cladding integrity, peak fuel and	methods (pushrod	Retrospective Comment: Location-dependent	
		cladding temperatures.	dilatometry, laser flash	composition data and fission product deposition	
Broken Fuel Rods		Core stratification samples (bore samples containing several fuel and	diffusivity, etc.) to	data useful for gross model calibration but	
LONER		one control rod) – composition (ratio of fuel to non-fuel), materials	obtain mechanical	properties vary with oxidation and porosity. Easier	
		interactions (damage, materials interactions), fission product	(hardness, tensile	to obtain with unirradiated materials (confirming	
		retention/release, coolability information (porosity, permeability),	strength, compressive	irradiation effects, as needed). Peak temperature	
		fission product retention/release)	strength) and thermal	information only useful for gross calibration of	
NZX ZA		Components (spacer grids, in-core instrumentation, end fittings, vessel	properties (density,	model results. Confirmatory data for design and	
A Sta De My		steel) - characterize peak temperatures and materials interactions	thermal conductivity,	qualification of equipment for removal, transport,	
CARL STATISTICS			thermal expansion	and storage. Additional data/photos to	
		Debris relocated to the vessel lower head (grab samples from hard layer	coefficient, specific	characterize debris/structure interface on lower	
		of debris after breakup) – composition, fission product	heat capacity, liquidus	head would have been useful.	
Lower Head Look		retention/release, fission product retention/release	temperature)		
	L				

В

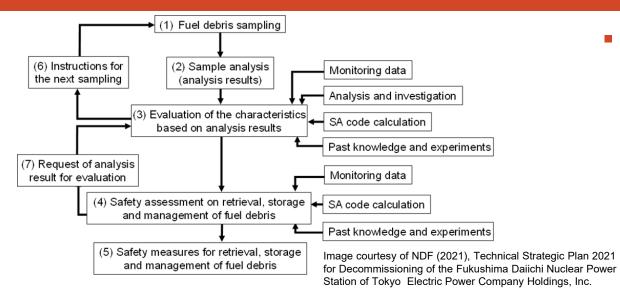

International Participation Important Aspect of Developing Accident Progression Consensus Insights

 International programs included sample examinations, stand-alone testing, and systems analysis code calculations.

- Exams completed by laboratories in European Union Joint Research Centre, Canada, France, Federal Republic of Germany, Sweden, Japan, Switzerland, and United Kingdom
 - Included debris 'grab' samples and fuel rod segments
 - Focused on peak temperatures, elemental composition, chemical form, oxidation state, materials interaction, morphology, fission product retention, and cooling rates / atmospheres
- Examination data, stand-alone test information, analysis code results, and discussions led to important consensus accident progression insights:
 - Mass and composition of relocated material within each RPV region
 - Fission product retention
 - Coolability
 - Oxidation state
 - Hydrogen generation potential

Examinations Supported Defueling, Transport, and Storage Activities

Types of TMI-2 and Daiichi Defueling Challenges Similar



			È
1	1		
	>		

Graphics courtesy of TEPCO Holdings and Energy*Solutions* Incomplete knowledge:

- Location of fuel-containing materials
- Material properties to design removal equipment and shipping cannisters
- Locations of highest contamination
- Possible defueling safety concerns:
- Decay heat
- Recriticality
- Combustion/pyrophoric reactions
- Radiation release (dust generation)
- Containment or vessel structural failures (load drop, seismic events)
- Other (industrial occupational safety, fire protection, etc.)
- Stakeholder communication

Closing Remarks

- At the time, TMI-2 accident and cleanup effort challenges unprecedented. Challenges met using flexible 'step-by-step" approach:
 - Broad stakeholder input for information requests
 - Specialized technology development (adapting existing methods)
 - Endstate diagrams and 3D models useful for communication (updated as new data obtained)
 - Severe accident systems analysis code development
 - Domestic and international programs
 - Transparent public communications

Japan applying systematic 'step-by-step' approach to address more complex Daiichi D&D:

- Broad stakeholder input for information request identification and prioritization (Japan MEXT /US DOE MOU)
- Advanced technology development and testing with mockups (some technologies have normal operation and maintenance applications)
- 2D and 3D visualization methods for communication (updated as new data obtained)
- Severe accident systems analysis code enhancements (facilitate subsequent D&D)
- Domestic and international programs (promotes common understanding of accident progression)
- Transparent public communications (e.g., websites facilitating stakeholder interactions, public meetings, etc.)