Decommissioning of the Fukushima Daichi NPP -Fuel-Debris Retrieval and Future Prospect -

7th International Forum on the Decommissioning of the Fukushima Daiichi Nuclear Power Station

2023/08/28

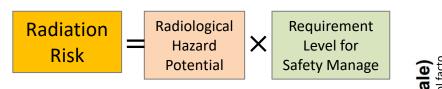
Hajimu Yamana

President Nuclear Damage Compensation and Decommissioning Facilitation Corporation

Professor Emeritus, Kyoto University

Current Situation of Fukushima Daiichi NPP

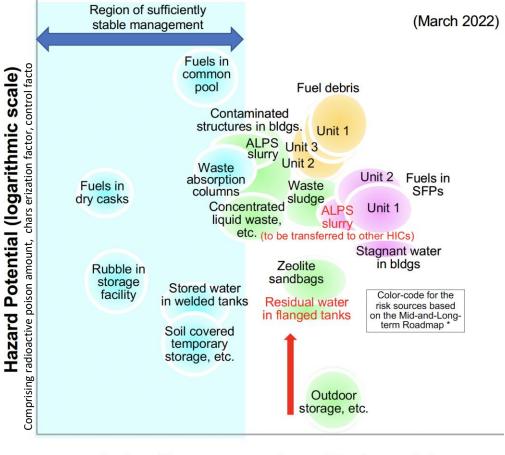
Photo: REUTER, May 19, 2022 (https://www.reuters.com/world/asia-pacific/japan-nuclear-regulator-grants-initial-nod-fukushima-water-release-plan-2022-05-18/) (Originally taken by Kyodo on Mar 17, 2022)


12-year Progress of the 1F Decommissioning

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Accident	•												
Contaminated Water Management	● KI	pped lea JRION in SARRY in	stalled	eawater	trench								
			ALP:	S treatm									
					• Hi	ghly con	taminat	1		ent comp installed	pleted		
ALPS-treated Water				The	governi	ment pu	blished t	he basic	policy to	o dischar	g		
				Implem	nentatio	n Plan fo	r discha			ed water			
								Facility	installat	ion for c	lischarge	e comple	ted
In-Reactor Inspection		Came	1	ed from a inserte	d from p	enetrat	ion (Unit						
					Obse	rved wit	h muon	(Unit 1)					
						Camera	• Obs	erved wi	th muor	ion (Unit n (Unit 2)			
							• Ir			underw			
						Ir	vestigat		-	with han ater RO			it 2) -
Spent Fuel Removal					Unit 4	Spent fu	iel remo	val com	oleted				
						Unit	3 Spent	fuel ren	noval co	mpleted	•		
				Construc	ction of l	arge stru	uctures f	for SF ret	trieval at	: U-1&2,	start		
Waste Management						Miso	c. solid w	aste inc	inerator	installed	l		
							(torage a			
Organization Reform		FDEC	 founded	• Or	ganizaio	n reforn	1	sou Mira ject mar		acturing nt●	Co. four	nded $lacksquare$	

Risk characteristic by resources (Significance of fuel debris)

Origin: Technical Strategic Plan 2022


Proactively reduce risk level at site

Reduce Radiological Hazard Potential (Convert into controllable form)

Improve Form Factor	Convert gas, liquid and powder into solid				
Improve Control Factor	Reduce heat generation, corrosiveness, reactivity and criticality				

Improve Level for Safety Management

Improve confinement	Enhance confinement performance
Improve long-term	Deactivation, stabilization,
stability of risk	enhanced monitoring and
sources	facilitated handling

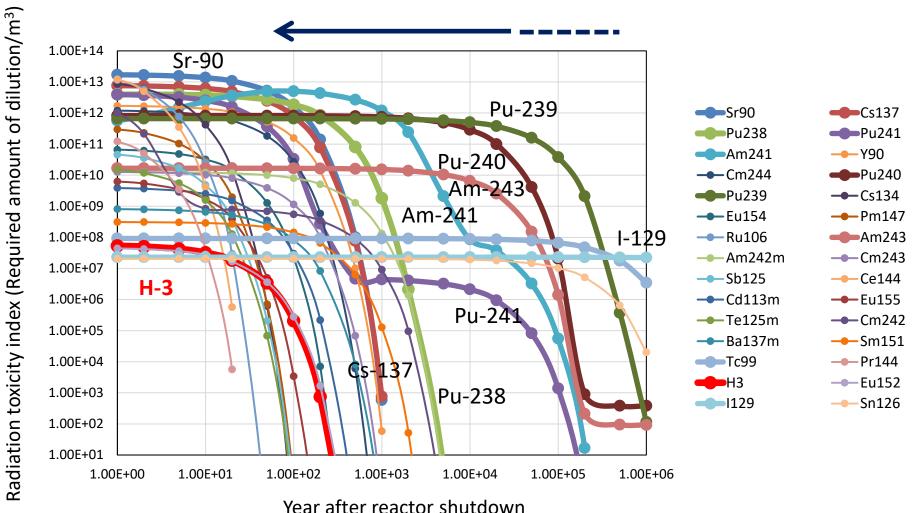
Safety Management (logarithmic scale)

Comprising facility containment fragility, long-term instability of risk sources

Fig. Risk Profile by SED

NDF Strategic Plan 2020

• NRA requested TEPCO's relevant actions by publicizing "Measures for Mid-term Risk Reduction at TEPCO's Fukushima Daiichi NPS"


Solid radioactive material: Risk reduction area with high priority (except fuel debris (FD)) Risk•Water treatment (unstable) •Buildings dismantled (future) •Rubbles etc. (through past decommission work) •Nuclide analysisFurther stabilization → Classification and storage/management ·Appropriate storage and management ·Analytical facility and capacityMajor goals other than solid radioactive material ·SF ·External events ·Critical for D&D work• Liquid radioactive material ·SF ·External events ·Critical for D&D work• Process full amount of liquid material ·Dry storage of whole SF ·Planned discharge of treated water Safe storage of FD		2023~2025	Future goal(2026~34)
	Risk reduction area with high priority (except fuel debris (FD)) Risk Major goals other than	 Buildings dismantled (future) Rubbles etc. (through past decommission work) Nuclide analysis Liquid radioactive material SF External events 	 Classification and storage/management Appropriate storage and management Analytical facility and capacity Process full amount of liquid material Dry storage of whole SF Measures for building ageing and damages Planned discharge of treated water

In line with these Main Goals, "FD retrieval and storage" and "Management and disposal of radioactive waste has to be steadily and full-fledged challenged for suppressing short-and-mid term risk and reducing long-term risk

edited from NRA 2023/02/01

Time transition of radioactive poison with Spent Fuel

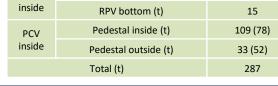
Conduct FD retrieval and isolation In pursuit of future "passive low risk"

Produced from JAEA-Data/Code 2012-018 (K. Nishihara et al.)

Status of Fuel Debris (Estimate and Observation)

RPV bottom (t)

Pedestal inside (t)


Pedestal outside (t)

Total (t)

inside

PCV

inside

NDF

25

103 (51)

96 (6)

281

©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

RPV bottom (t)

Pedestal inside (t)

Pedestal outside (t)

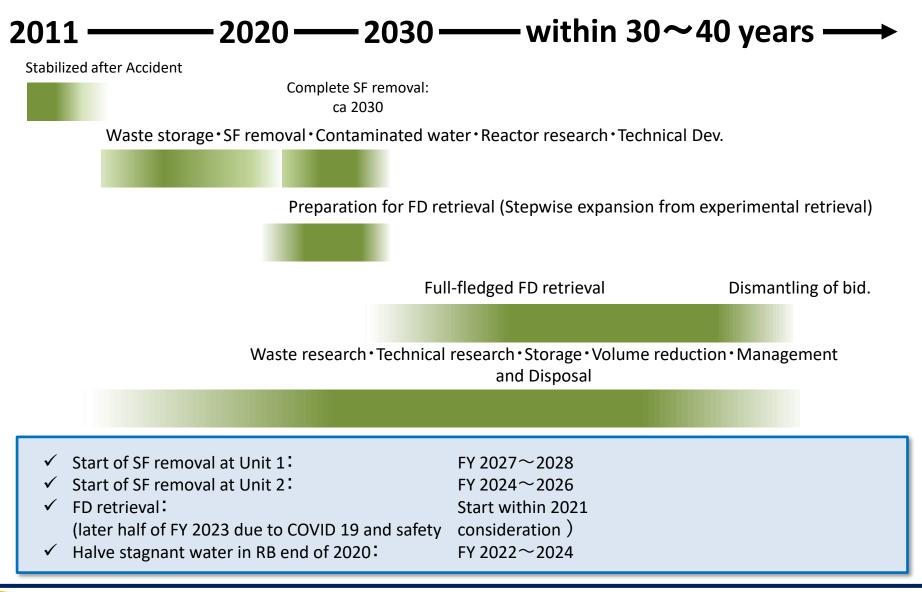
Total (t)

inside

PCV

inside

25

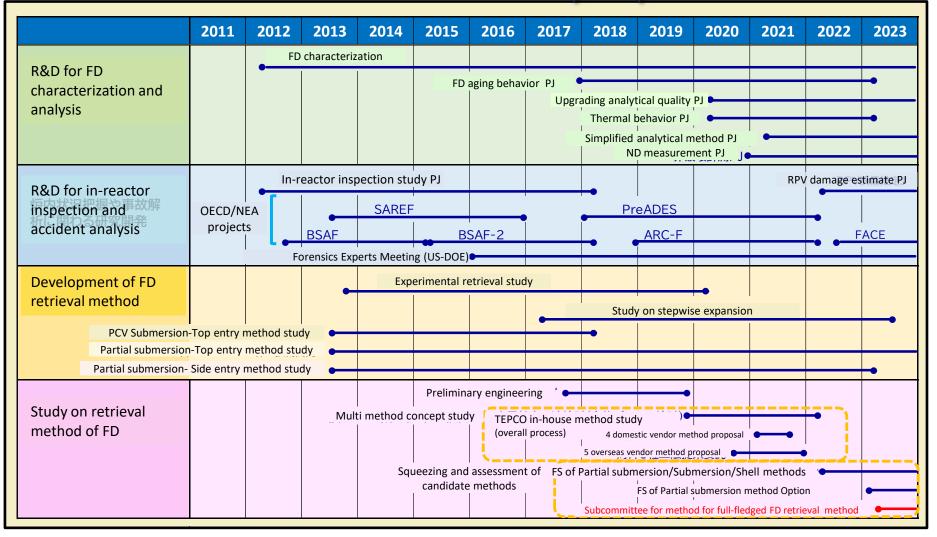

92 (37)

102 (4)

260

Mid-and-Long-Term Roadmap towards the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station

Edited from RM(2019)



History of FD retrieval study

NDF proposed to focusing on the partial submersion methods.

RM decided U2 as the first implementing Unit

9

Safety

IAEA GSR (General Safety Requirement) Part 6 (Decommissioning of Facilities)

Many of the requirements established in this publication can also be applied to decommissioning after an accident has occurred or a situation has arisen that has resulted in serious damage to, or the contamination of, a facility, or simply after the premature shutdown of a facility.

Requirement 1: Optimization of protection and safety in decommissioning

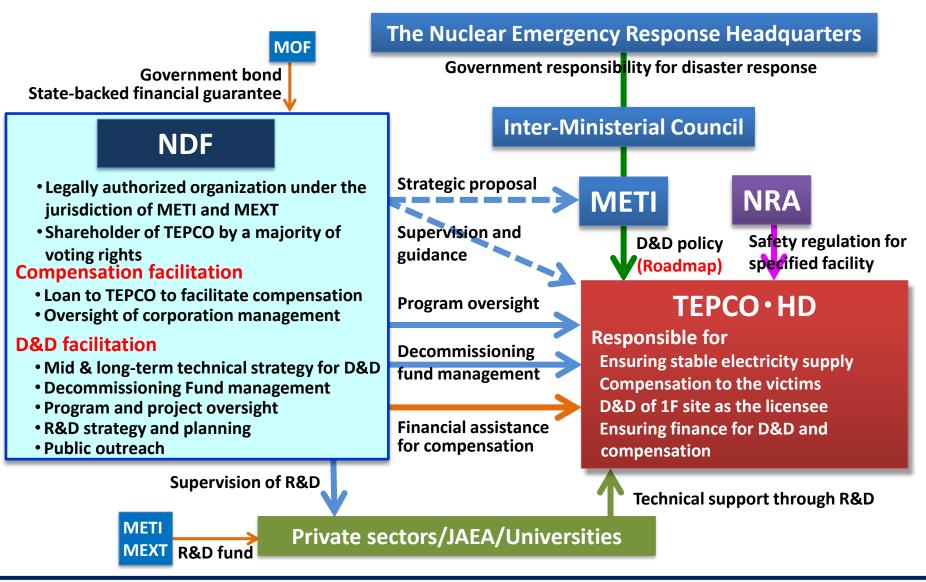
Exposure during decommissioning shall be considered to be a planned exposure situation and the relevant requirements of the Basic Safety Standards shall be applied accordingly during decommissioning.

Requirement 2: Graded approach in decommissioning

A graded approach shall be applied in all aspects of decommissioning in determining the scope and level of detail for any particular facility, consistent with the magnitude of the possible radiation risks arising from the decommissioning.

Requirement 3: Assessment of safety for decommissioning

Safety shall be assessed for all facilities for which decommissioning is planned and for all facilities undergoing decommissioning.


Currently no Guidance exists indicating the approach ensuring the safety for the features of 1F D&D (Uncertain level/status of radioactivity, radioactive environment, work plan etc.) Consequently, to share the information and to get on the same page between the regular and operator incorporating following angles is keenly expected.

- •Balance between the short-term risk and long-term risk to be suppressed in terms of time-axis
- •Application of risk informed approach such as graded-approac
- •Balance between the increase of workers' risk and deduction of public risk
- •Maintain D&D work as long-term challenge, respect of public perception etc.

Transla	ated	by	NR

IAEA Safety Standards
for protecting people and the environment
Decommissioning of Facilities
General Safety Requirements Part 6
No. GSR Part 6

- Full-fledged fuel debris removal at around 2030 is planned in line with the policy in the Mid-and-Long Term Roadmap following from the experimental removal at the First Unit.
- While priority is being placed on the operations to maintain the site stability and to reduce the short and mid-term risk at the site, it is required to embody fullpledged "Fuel Debris Removal" for the reduction of the long-term risk.
- On the background of the accumulated achievement of R&D works and the result of various implementations over the past 12 years, it's been started by TEPCO and NDF to assess and select the full-fledged fuel debris retrieval methods.
- It is expected that TEPCO's engineering work would go forward under the cooperative frame of multiple committed organizations with the full support by the government.
- As for fuel debris retrieval, it is essential for TEPCO to look for the methods with assured safety through the careful preparation such as engineering and designing etc. To assist this, sharing the information and same recognition by the regulator and operator is keenly expected.

